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We propose a possible mechanism of topological Hall effect in inhomogeneous superconducting states. In
our scenario, the Berry phase effect associated with spatially modulated superconducting order parameter gives
rise to a fictitious Lorentz force acting on quasiparticles. In the case of the Fulde-Ferrell-Larkin-Ovchinnikov
state, the topological Hall effect is detected by applying an electromagnetic wave with a tuned wave number on
a surface of the system.
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In a spin-singlet superconductor under an applied mag-
netic field, when the Pauli depairing effect dominates over
the orbital depairing effect, spatially modulated supercon-
ducting order parameter is stabilized.1,2 It has been discussed
recently that this inhomogeneous superconducting state
called the Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state
may be realized in a heavy-fermion system CeCoIn5 and
some quasilow-dimensional superconductors.3–12 The pos-
sible realization of an analogous inhomogeneous supercon-
ducting state was also proposed for noncentrosymmetric su-
perconductors, in which antisymmetric spin-orbit interaction
combined with the Zeeman magnetic field stabilizes the he-
lical vortex state.13 It is an important issue to establish the
realization of these exotic superconducting states in the
above-mentioned systems experimentally. From this perspec-
tive, it is useful to study electromagnetic properties specific
to the inhomogeneous superconducting states in detail,
which may be utilized for the experimental identification of
the modulated order parameter.14,15 In this Rapid Communi-
cation, we demonstrate that a spatially varying superconduct-
ing order parameter characterizing the inhomogeneous state
gives rise to distinct electromagnetic response caused by to-
pological Berry phase effects.16 In particular, under a certain
circumstance, the topological Hall effect can be raised by a
fictitious “Lorentz force” which is generated by the Berry
phase effect associated with the inhomogeneous order pa-
rameter. It was discussed by Bruno et al.17 that for electrons
interacting with spin textures which possess a nonzero Berry
curvature, the Hall effect is induced by the fictitious Lorentz
force raised by the Berry phase effect. We here consider a
possible analogous phenomenon in superconducting states
with a spatially slowly varying order parameter. We note that
the topological Hall effect considered in this Rapid Commu-
nication is a transport property of quasiparticles and we do
not consider the Hall effect associated with supercurrents
here.18

Our approach is based upon the quasiclassical method for
the description of quasiparticle dynamics in superconducting
states.19–21 We extend the quasiclassical Eilenberger equation
to take into account important Berry phase effects. The basic
quantity with which we are concerned in the following argu-
ment is the single-particle Green’s function for the supercon-
ducting state, from which dynamical properties can be de-
rived
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and anomalous Green’s functions, and Ḡ�x ,x��=G�x� ,x�,
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with �n the fermionic Matsubara frequency. When there is a
vector potential A0, the Gor’kov equation satisfied by

Ĝ�k ,R ,�n� is

��̂3i�n − ��k −
i

2
�R − eA0�̂3� + �̂3h − �̂ − �̂�Ĝ�k,R,�n� = 1̂,
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where ��k� is the energy-band dispersion for electrons, h
=�BHz is the Zeeman magnetic field, �̂� ��=1,2 ,3� is the

Pauli matrix in the particle-hole space, and �̂ is the normal
self-energy matrix which is diagonal in the particle-hole
space, and includes effects of impurity scattering, and
electron-electron interaction. We consider the spin-singlet
pairing state with the gap function

�̂�x,x�� = � 0 ��R�
− ���R� 0

� . �4�

We expand the kinetic-energy term of Eq. �3� in terms of the
spatial gradient �R, and transform the basis of the particle-

hole space as G̃̂= Ĝ�̂3. Then, Eq. �3� is rewritten into

�i�n + �̂3
i

2
v�R + evA0 + h − �̂ · Ĥ0 − �̂3�̂�G̃̂�k,R,�n� = 1̂
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with Ĥ0= ��1�R� ,−�2�R� ,��k�	, �1�R�=Re ��R�, �2�R�
=Im ��R�, and v= ���k�

�k . We diagonalize the fifth term �̂ ·Ĥ0
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by applying the unitary transformation G̃̂�= Û†�R�G̃̂Û�R�;
i.e., Û†�R��̂ ·Ĥ0Û�R�=E�k��̂3 and E�k�=
�2�k�+ ���R��2

�i�n +
i

2
Û†�̂3Ûv�R +

v
2

Âf + evA0 + h − E�k��̂3

− Û†�̂3�̂Û�G̃̂� = 1̂. �6�

Here, the unitary transformation applied to the spatial gradi-
ent term of Eq. �5�, �̂3

i
2v�R, gives rise to a fictitious vector

potential Âf= iÛ†�̂3�RÛ, which is a 2�2 matrix in the
particle-hole space. At this stage, we apply the adiabatic ap-
proximation, assuming that the transition between the elec-
tron band with the energy E�k� and the hole band with the
energy −E�k� is suppressed, and neglect the off-diagonal

terms of Û†�̂3Û and Âf; i.e.,

Û†�̂3Û →
��k�
E�k�

�̂3, �7�
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��k�
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with Af1= 1
2 �1− E�k�

��k� 	�R	�R� and Af2=− i
4

�R���2

E2�k� . Here 	�R� is

the phase of the gap function; ��R�= ���R��ei	�R�. The ap-
proximation in Eqs. �7� and �8� is most crucial in our argu-
ment for the realization of the Berry phase effect. The Berry
phase effect appears when one restricts the Hilbert space
within a subspace in which the change in the phase of the
wave function is regarded as an adiabatic one. Here, we re-
strict the Hilbert space within the electron band or the hole
band. Then, suppressing the transition between the electron
band and the hole band, one can neglect the off-diagonal
elements of Eq. �6�, as done in Eqs. �7� and �8�. This ap-
proximation is valid at sufficiently low temperatures because
of the energy difference between the electron band and the
hole band due to the Zeeman splitting. We will discuss the
validity of the approximation in more detail in the last part of
this Rapid Communication. As a result, the diagonal compo-
nent Eq. �8� can be regarded as fictitious U�1� gauge fields

acting on quasiparticles. Within this approximation, G̃̂� is

diagonal; G̃̂�=diag�G̃+� , G̃−��. Each component satisfies
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with 
=�, and �̃
� is the diagonal component of Û†�̂3�̂Û. In
Eq. �9�, we have rewritten the derivative term and the vector
potential terms into a gauge-invariant form.

To simplify the analysis, we assume that A0 is a time-
dependent uniform field, which yields an electric field. It is
straightforward to generalize the following analysis to the
case that A0 also produces a magnetic field. To solve Eq. �9�
for G̃
� , we follow the quasiclassical approach developed by

Eilenberger. We extract the left-hand Gor’kov equation from
the right hand side of Eq. �9�, expand it in terms of the
spatial gradient �R up to the second order, and integrate each
term over the energy dispersion �k���k�. From the second
term of Eq. �9�, we obtain

� d�k

�
�i


�k

E�k�
v�̃RG̃
� + i�v � Bf�

�G̃
�

�k

� , �10�

where Bf is the Berry curvature Bf=��Af1, the explicit ex-
pression of which is

�Bf� = − ���

1

4E2�k�
� ���2
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� �	
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− 2eA0�� �11�

and �̃R is the derivative with respect to R under the con-
straint that E�k−


Af1

2 −
Af2

2 −
e
Ek

�k
A0� is fixed. k is the mo-

mentum parallel to the Fermi surface. Note that the Af2 term
of Eq. �9� is a pure gauge, and does not give a nonzero Berry
curvature. The second term of Eq. �10� is the fictitious Lor-
entz force term, the origin of which is the topological Berry
phase effect raised by the spatial modulation of the supercon-
ducting order parameter. From Eq. �11�, we see that the fic-
titious magnetic field is nonzero only when both the ampli-
tude and the phase of the superconducting gap are spatially
modulated. Thus, the topological Hall effect does not occur
for the Fulde-Ferrel state and the helical vortex phase, in
which only the phase of the superconducting gap is
modulated.2,13 It is also noted that the fictitious magnetic
field Eq. �11� has a gauge-invariant form.

In the standard quasiclassical approach, the Gor’kov
equation is recast into the Eilenberger equation for the nor-
malized Green’s function

g̃
� =� d�k

�
G̃
� . �12�

However, unfortunately, the first term of Eq. �10� cannot be
expressed in terms of the normalized Green’s function be-
cause of a strongly varying factor �k /E�k�, which stems from

the use of the transformed Green’s function G̃̂� instead of the

standard Green’s function Ĝ. To avoid this difficulty, we re-
strict our argument within the case with a uniform current
and discard this term. For the second term of Eq. �10�, we
evaluate the integral over �k in the following manner:

� d�k

�
�v � Bf�

�G̃
�

�k

� �v � B̃f�
� g̃
�

�k

�13�

with

B̃f = �Bf��k=0 for ��R� � h

0 for ��R� � h .
� �14�

Then, the Eilenberger equation for the uniform current state
satisfied by the normalized Green’s function g̃
���n ,�n�� un-
der the vector potential A0�t�=A0��0�ei�0t is given by
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�i�n − i�n��g̃
���n,�n�� + i�v � B̃f� · �k
g̃
���n,�n�� + evA0��0�

��g̃
���n − �0,�n�� − g̃
���n,�n� + �0�	

− 
̃
��n�g̃
���n,�n�� + g̃
���n,�n��
̃
��n�� = 0. �15�

Here 
̃
��n� is the normalized self-energy 
̃
=�
d�k

� �̃
� . We
have neglected effects of external fields on the self-energy.
The second term of Eq. �15� is the fictitious Lorentz force
term which gives rise to the topological Hall effect.

In the following, to be concrete, we consider the case of
the FFLO state with the spatially modulated superconducting
gap ��R�=�0 cos qx, which is believed to be realized in
CeCoIn5 under an applied magnetic field parallel to the x
axis.4,5 We examine the Hall current parallel to the x axis
induced by the topological Berry phase effect, when an elec-
tric field Ey is applied along the y axis. Note that since the
Hall current is parallel to the external magnetic field in this
situation, its is not difficult to distinguish between the topo-
logical Hall effect considered here and the ordinary Hall ef-
fect induced by the applied magnetic field in experimental
measurements. As mentioned above, to obtain the nonzero
Bf, we need the spatial modulation of the phase of the super-
conducting gap 	, as well as the amplitude modulation due
to the FFLO state. To fulfill this requirement, we consider the
situation that the electric field Ey induces a supercurrent par-
allel to the y axis, and thus �y	−2eA0y �0. We solve Eq.
�15� for g̃
� in the vicinity of the superconducting transition
temperature Tc. It is easily seen from Eq. �15� that g̃+� and g̃−�
in the uniform current state are the same. Thus, we obtain the
normalized Green’s function in the original particle-hole
space ĝ=diag�g , ḡ�= g̃+��̂3. Then, the expression for the Hall
current for T�Tc is

Jx
Hall = T�

n
� d�kevx�g − ḡ��i�→�+i�

�→0
�


n���B̃f�z�
m

Ey .

�16�

Here ��B̃f�z� is the spatial average of the fictitious magnetic
field, 
n is the normal-state conductivity, and � is the relax-
ation time of electrons. Note that from the derivation de-
scribed above, it is apparent that the topological Hall effect
considered here is a nonlinear response to external fields.
The bulk Hall current obtained above is nonzero only when

the spatial average of the fictitious field B̃f is nonzero. This
implies that ��x����= ���Lx��− ���0���0; i.e., the magnitude
of the gap function at the two opposite edges must be differ-
ent. This condition crucially depends on extrinsic factors
such as the geometry of a sample used for the measurement
of the Hall effect, and pinning of the nodal plane of the
FFLO state due to impurities. These extrinsic factors, unfor-
tunately, makes it difficult to detect the Hall current experi-
mentally. To avoid such extrinsic factors, one can use the
scanning tunnel microscope �STM� measurement for the de-
tection of the Hall effect. Even when the condition ��x����
= ���Lx��− ���0���0 is not satisfied, the fictitious Lorentz
force induced by the Berry curvature is balanced by the elec-
trostatic force due to the topological Hall voltage which has
a spatial dependence VHall�cos qx in the above-mentioned

model. This electrostatic field gives rise to the inhomoge-
neous charge redistribution, which may be observed on the
surface of the system via the STM measurement. It should be
cautioned that the charge disproportion raised by the topo-
logical Hall effect cannot be described by Eq. �16� because it
is assumed in its derivation that the current is spatially uni-
form.

However, more promising approach for the detection of
the topological Hall effect is to exploit an electromagnetic
wave E0ei��t−kx� applied on a surface of the system. For the
setup considered above, the electromagnetic wave is a mono-
chromatic plane-wave propagating along the x axis, and is
linearly polarized so as that the electric field E0 is parallel to
the y axis. We consider the situation that this electromagnetic
wave is applied in addition to the static electric field parallel
to the y axis, which is required to realize the nonzero ficti-
tious field B̃f�0. When the wave number k is chosen to be
equal to q, the oscillating factor of the fictitious magnetic
field B̃f is cancelled out with that of the electromagnetic
field, and hence, there is the net nonzero fictitious Lorentz
force acting on quasiparticles. In this situation, we obtain the
ac topological Hall current flowing along the x direction on
the surface, which is easily detected. Since the induced Hall
current is uniform in this case, the derivation of the expres-
sion of the Hall conductivity presented above is justified, and

the Hall current is given by Eq. �16� with ��B̃f�z� replaced

with ��B̃f�zcos qx�. It is noted that the above argument can be
straightforwardly extended to the case with the orbital effect
of magnetic fields.10,11 We stress again that the direction of
the topological Hall current considered here is parallel to the
applied external magnetic field, which is required to realize
the FFLO state. Thus, in experimental measurements, one
can clearly discriminate between the topological Hall effect
and the ordinary Hall effect of quasiparticles induced by the
applied magnetic field.22

Finally, we discuss the validity of the adiabatic approxi-
mation which is crucial in our argument. The emergence of
the Berry phase effect is due to the application of the adia-
batic approximation; i.e., the transition between the electron
band and the hole band is neglected, which is the central
assumption in the derivation of the Gor’kov equation with
the fictitious vector potential Eq. �9�. This assumption is
valid as far as there is an energy gap which separates the
electron band and hole band, and temperature is sufficiently
lower than the energy scale of the gap. However, in the
FFLO state with the gap function ��x�=�0 cos qx, there are
nodal planes of the superconducting gap at which ��x�=0.
The existence of the nodal planes affects the energy spectrum
of quasiparticles drastically. This issue was solved exactly in
the case of the one-dimensional system,15,23 and it was found
that there is still an energy gap in the quasiparticle spectrum,
which may validate the adiabatic approximation. However,
in two and three dimensions with which we are concerned, it
may be possible that the quasiparticle spectrum may become
gapless because of the energy dispersion in the direction per-
pendicular to the x axis. Nevertheless, we can justify the
adiabatic approximation applied to our system because of the
following reason. Even if the superconducting gap vanishes
at the nodal plane of the FFLO state, there is still an energy
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gap between the electron band with up �down� spin and the
hole band with down �up� spin in the vicinity of the Fermi
level because of the Zeeman splitting. Thus, for temperatures
much lower than the Zeeman energy scale, the transition
between these two bands is suppressed, and hence, the adia-
batic approximation is properly applied. Although we de-
rived the expression for the topological Hall conductivity Eq.
�16� only in the vicinity of the transition temperatures, the
Hall effect is more clearly observed at sufficiently low tem-
peratures.

In summary, we have demonstrated that the topological
Hall effect of quasiparticles can be raised by the Berry phase

effect associated with the spatially slowly varying supercon-
ducting order parameter which is realized in the FFLO state.
The experimental detection of this effect which is feasible
with the use of an ac electromagnetic field applied on a sur-
face of the system may provide an evidence of the realization
of the inhomogeneous superconducting state.
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